Challenges in Parkinson's Disease (2024)

Related Papers

International Journal of Molecular Sciences

Epigenetic Regulation of Neuroinflammation in Parkinson’s Disease

madiha rasheed

Neuroinflammation is one of the most significant factors involved in the initiation and progression of Parkinson’s disease. PD is a neurodegenerative disorder with a motor disability linked with various complex and diversified risk factors. These factors trigger myriads of cellular and molecular processes, such as misfolding defective proteins, oxidative stress, mitochondrial dysfunction, and neurotoxic substances that induce selective neurodegeneration of dopamine neurons. This neuronal damage activates the neuronal immune system, including glial cells and inflammatory cytokines, to trigger neuroinflammation. The transition of acute to chronic neuroinflammation enhances the susceptibility of inflammation-induced dopaminergic neuron damage, forming a vicious cycle and prompting an individual to PD development. Epigenetic mechanisms recently have been at the forefront of the regulation of neuroinflammatory factors in PD, proposing a new dawn for breaking this vicious cycle. This revi...

View PDF

Genes

Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson’s Disease Influence Sporadic Forms?

2022 •

Suzanne Lesage

Parkinson’s disease (PD) is a disorder characterized by a triad of motor symptoms (akinesia, rigidity, resting tremor) related to loss of dopaminergic neurons mainly in the Substantia nigra pars compacta. Diagnosis is often made after a substantial loss of neurons has already occurred, and while dopamine replacement therapies improve symptoms, they do not modify the course of the disease. Although some biological mechanisms involved in the disease have been identified, such as oxidative stress and accumulation of misfolded proteins, they do not explain entirely PD pathophysiology, and a need for a better understanding remains. Neurodegenerative diseases, including PD, appear to be the result of complex interactions between genetic and environmental factors. The latter can alter gene expression by causing epigenetic changes, such as DNA methylation, post-translational modification of histones and non-coding RNAs. Regulation of genes responsible for monogenic forms of PD may be involv...

View PDF

International Journal of Molecular Sciences

Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson’s Disease

Natacha Port's

Background: Parkinson’s disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been establi...

View PDF

Acta neuropathologica

Epigenetic regulation in Parkinson's disease

2016 •

Oswaldo Lorenzo

Recent efforts have shed new light on the epigenetic mechanisms driving gene expression alterations associated with Parkinson's disease (PD) pathogenesis. Changes in gene expression are a well-established cause of PD, and epigenetic mechanisms likely play a pivotal role in regulation. Studies in families with PD harboring duplications and triplications of the SNCA gene have demonstrated that gene dosage is associated with increased expression of both SNCA mRNA and protein, and correlates with a fulminant disease course. Furthermore, it is postulated that even subtle changes in SNCA expression caused by common variation is associated with disease risk. Of note, genome-wide association studies have identified over 30 loci associated with PD with most signals located in non-coding regions of the genome, thus likely influencing transcript expression levels. In health, epigenetic mechanisms tightly regulate gene expression, turning genes on and off to balance homeostasis and this, in...

View PDF

International Journal of Molecular Sciences

Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Disease

Georgia Xiromerisiou

Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut–brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity...

View PDF

Frontiers in Neurology

Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease

2021 •

Albert Magnusen

Parkinson's disease (PD) is a movement disorder attributed to the loss of dopaminergic (DA) neurons mainly in the substantia nigra pars compacta. Motor symptoms include resting tremor, rigidity, and bradykinesias, while non-motor symptoms include autonomic dysfunction, anxiety, and sleeping problems. Genetic mutations in a number of genes (e.g., LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7) and the resultant abnormal activation of microglial cells are assumed to be the main reasons for the loss of DA neurons in PD with genetic causes. Additionally, immune cell infiltration and their participation in major histocompatibility complex I (MHCI) and/or MHCII-mediated processing and presentation of cytosolic or mitochondrial antigens activate the microglial cells and cause the massive generation of pro-inflammatory cytokines and chemokines, which are all critical for the propagation of brain inflammation and the neurodegeneration in PD with genetic and idiopathic causes. Despite knowing ...

View PDF

Current Topics in Behavioral Neurosciences

Neuroinflammation in Parkinson’s Disease Animal Models: A Cell Stress Response or a Step in Neurodegeneration?

2014 •

David Sulzer

View PDF

Dialogues in Clinical Neuroscience

The potential role of neuroinflammation and transcription factors in Parkinson disease

2017 •

Prafulla Tiwari

Parkinson disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurons affected by inflammatory processes. Post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines, confirming an ongoing neuroinflammation in the affected brain regions. These inflammatory mediators may activate transcription factors-notably nuclear factor κB, Ying-Yang 1 (YY1), fibroblast growth factor 20 (FGF20), and mammalian target of rapamycin (mTOR)-which then regulate downstream signaling pathways that in turn promote death of dopaminergic neurons through death domain-containing receptors. Dopaminergic neurons are vulnerable to oxidative stress and inflammatory attack. An increased level of inducible nitric oxide synthase observed in the substantia nigra and striatum of PD patients suggests that both cytokine-and chemokine-induced toxicity and inflammation lead to oxidative stress that contributes to degeneration of dopaminer...

View PDF

Pathology - Research and Practice

Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease

2023 •

manar tabaa

Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic

View PDF

Brain Sciences

Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson’s Disease Pathogenesis: A Narrative Review

2022 •

Sokratis G. Papageorgiou

Parkinson’s disease (PD) is the second most common neurodegenerative disorder with an unclear etiology and no disease-modifying treatment to date. PD is considered a multifactorial disease, since both genetic and environmental factors contribute to its pathogenesis, although the molecular mechanisms linking these two key disease modifiers remain obscure. In this context, epigenetic mechanisms that alter gene expression without affecting the DNA sequence through DNA methylation, histone post-transcriptional modifications, and non-coding RNAs may represent the key mediators of the genetic–environmental interactions underlying PD pathogenesis. Environmental exposures may cause chemical alterations in several cellular functions, including gene expression. Emerging evidence has highlighted that smoking, coffee consumption, pesticide exposure, and heavy metals (manganese, arsenic, lead, etc.) may potentially affect the risk of PD development at least partially via epigenetic modifications...

View PDF
Challenges in Parkinson's Disease (2024)

References

Top Articles
Latest Posts
Article information

Author: The Hon. Margery Christiansen

Last Updated:

Views: 6665

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: The Hon. Margery Christiansen

Birthday: 2000-07-07

Address: 5050 Breitenberg Knoll, New Robert, MI 45409

Phone: +2556892639372

Job: Investor Mining Engineer

Hobby: Sketching, Cosplaying, Glassblowing, Genealogy, Crocheting, Archery, Skateboarding

Introduction: My name is The Hon. Margery Christiansen, I am a bright, adorable, precious, inexpensive, gorgeous, comfortable, happy person who loves writing and wants to share my knowledge and understanding with you.